

Global ICT Standards Conference 2025

(세션2) AI를 활용한 응용기술 표준화

신경망을 활용한 영상 압축 기술 표준화

최기호 교수 경희대학교

ICT Standards and Intellectual Property: Al for All

<u>Index</u>

01 영상 압축 기술과 표준

02 신경망기반비디오코딩기술과 표준화동향

03 맺음말

1. 영상 압축 기술과 표준

Abstract

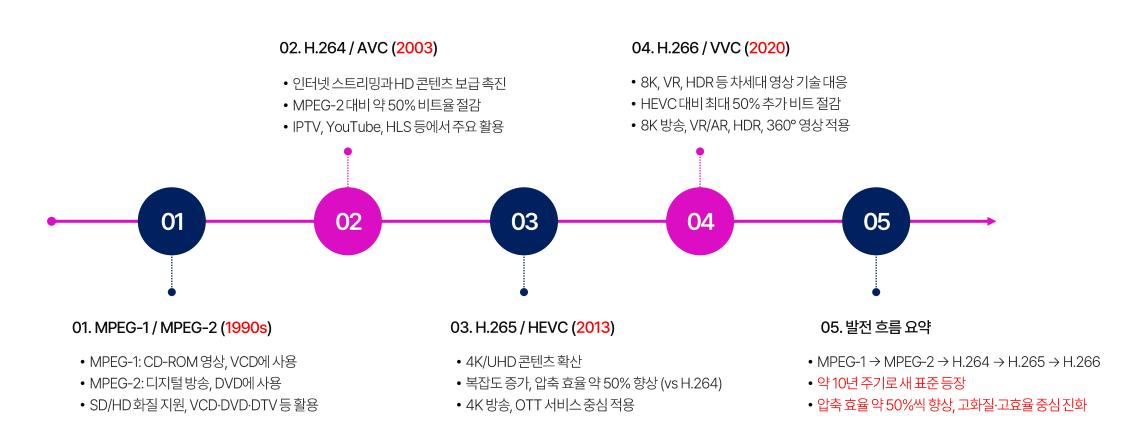
시경망을 활용한 영상 압축 기술 표준화

ICT Standards

기존 신호처리 기반 코덱의 한계를 극복하기 위해 신경망을 활용한 영상 압축 기술이 도입되고 있다. 현재 국제 표준화 기구(ISO/IEC JTC 1/SC 29 및 ITU-T SG 21)에서는 신경망 기반 영상 압축 기술(NNVC)를 차세대 비디오 압축 표준으로 채택하기 위한 연구가 활발히 진행 중이다. 본 발표에서는 이러한 표준화 추진 현황과 함께, 향후 비디오 코딩 표준의 성능 향상과 효율적 구현을 견인할 핵심 기술로 기대되는 NNVC의 최신 동향을 소개한다.

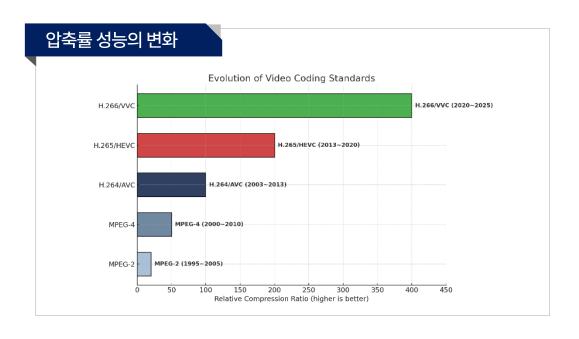
01. 비디오 코딩 표준 기구: JVET (Joint Video Experts Team)

│ MPEG (ISO/IEC JTC 1/SC 29)과 VCEG (ITU-T SG 21/ Question 6)의 공동 협력 팀으로 영상 압축 국제 표준화 수행



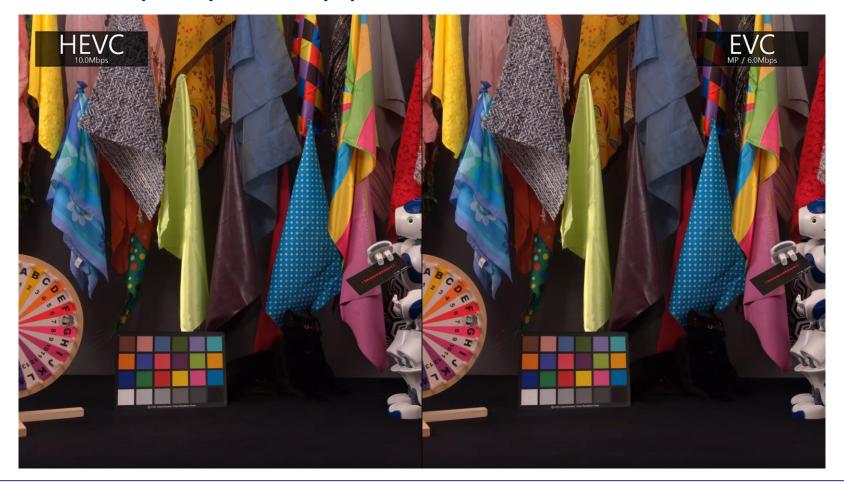
- JVT (Joint Video Team) 및 JCT-VC (Joint Collaborative Team on Video Coding) 계승
- '03년 AVC (Advanced Video Coding), '13년 HEVC (High Efficiency Video Coding) 및 '20년 VVC (Versatile Video Coding) 표준화 완료

02. 비디오 압축 표준의 진화


|비디오 압축 표준은 MPEG-1에서 H.266/VVC까지 약 10년 주기로 발전하며, 고화질 영상 지원과 함께 매 세대마다 약 50%씩 압축 효율을 향상시켜 왔음

03. 표준별 압축 성능 변화 및 적용 사례

비디오 코딩 표준들은 이전 세대 대비 약 50%의 비트율 절감을 달성하여 사장에 성공적으로 적용됨


표준 적용 사	례			
표준	발표년도	대상 해상도	주요 상용 서비스 / 적용 사례	비고
MPEG-1	1993	SD	VCD, 초기형 디지털 비디오 (CD-ROM 영상)	최초의 범용 디지털 비디 오 압축 표준
MPEG-2 (H.262)	1995	SD / HD	DVD, 디지털 TV(DVB, ATSC), 위 성 방송	방송과 저장 매체에서 오 랫동안 표준으로 사용
H.264 / AVC (MPEG-4 Part 10)	2003	HD	YouTube, Netflix, Hulu, IPTV, Blu-ray, Zoom, WebRTC 등	인터넷 스트리밍·영상 회 의의 핵심 표준
H.265 / HEVC	2013	4K / UHD	넷플릭스, 디즈니+, 애플TV+ 등 4K/HDR 스트리밍, UHD 방송, 스마트TV, 모바일 내장 코덱	
H.266 / WC	2020	8K / VR / HDR / 360°	Tencent Cloud, Fraunhofer, Huawei, Samsung 트랜스코딩 솔루션, 차세대 8K/VR 스트리밍	차세대 압축 및 클라우드 미디어 표준, 상용화 초기 단계

- MPEG-2는 디지털 방송과 DVD 시장에서 가장 널리 상용화된 표준으로, 전 세계 방송 송출 및 영상 저장 매체의 기반을 형성하며 디지털 영상 시대의 출발점이 되었음
- H.264/AVC는 유튜브·넷플릭스·IPTV 등 주요 스트리밍 서비스에 적용되며, 디지털 방송과 온라인 영상 산업을 폭발적으로 성장시킨 가장 성공적인 표준임
- H.265/HEVC는 4K·HDR·VR 서비스로 확대 적용되며, OTT, 스마트TV, 클라우드 미디어 플랫폼 등에서 핵심 기술로 성공적으로 상용화되고 있음

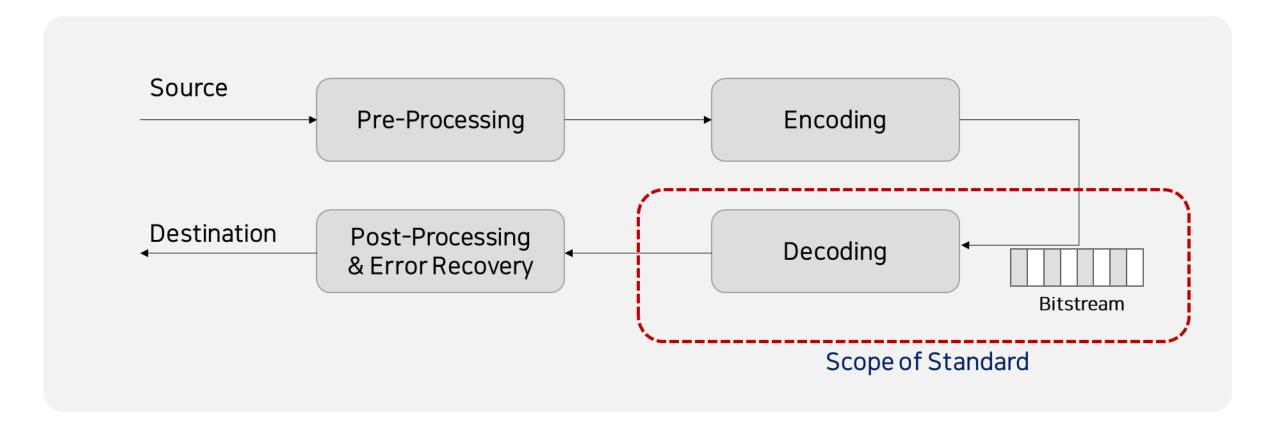
04. 비디오 압축 표준의 예시

┃ 동일화질 대비 비트 절감률 비교 (10Mbps vs 6Mbps)

04. 비디오 압축 표준의 예시

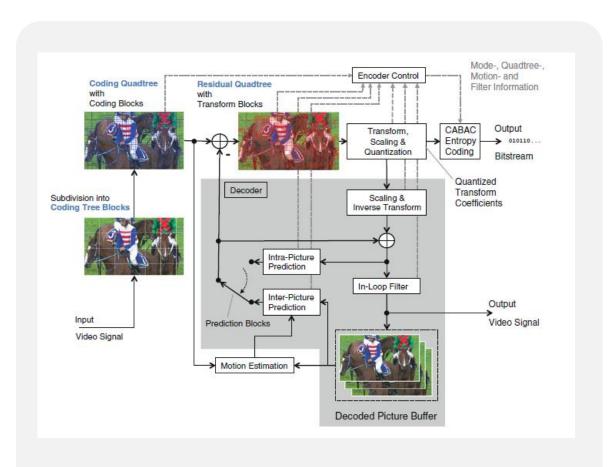
┃ 동일화질 대비 비트 절감률 비교 (9Mbps vs 5.5Mbps)

04. 비디오 압축 표준의 예시


┃ 동일화질 대비 비트 절감률 비교 (6.5Mbps vs 3.8Mbps)

05. 비디오 코딩 표준 스콥

비트스트림 + 디코딩동작



06. 전통적 비디오 코딩 구조

┃ 블록 분할 + 예측 + 변환 및 양자화 + 엔트트로 + 필터링

블록기반 하이브리드 구조

- 입력 영상 → 프레임 분할 (블록 기반 처리)
- 예측 기법
 - 인트라 예측 (Intra Prediction): 동일 프레임 내 인접 블록 기반 예측
 - 인터 예측 (Inter Prediction): 이전 프레임(또는 이후 프레임) 기반의 움직임 추정 (Motion Estimation) 및 움직임 보상 (Motion Compensation)
 - 잔차 계산 (Residual Calculation)예측된 영상과 실제 영상 간의 차이를 계산
- 변환 및 양자화 기법
 - 변환 (Transform): 예측 오차(잔차)를 DCT 등의 방법으로 주파수 영역으로 변환
 - 양자화 (Quantization): 정밀도를 줄여 데이터 비트를 감소시킴
- 엔트로피 부호화 기법
 - 통계적 중복성 제거 및 비트스트림 생성
- 필터링 기법
 - 블록 경계의 시각적 부자연스러움 제거
 - 픽셀 오차 패턴을 보정하여 품질 향상

HEVC 인코더 블록 다이어그램

07. 전통 비디오 코덱의 특성

┃ 수학적 모델링 기반 접근법

Σ 신호 처리 이론

- 푸리에 변환 이론: DCT/DST의 수학적 기반
- 정보 이론: 엔트로피, 율-왜곡 이론
- 확률 모델: 통계적 중복성 모델링
- 최적화 이론: 라그랑주 승수법 활용

DCT 변환 공식:

 $F(u,v) = C(u)C(v)/4 \sum f(x,y)\cos[(2x+1)u\pi/16]\cos[(2y+1)v\pi/16]$

∞ 최적화 목표 함수

- Rate-Distortion 최적화: R + λD 최소화
- MSE/PSNR: 객관적 품질 측정
- 비트 할당: 수학적 최적화 기법
- 임계값 결정: 통계적 모델 기반

RDO 최적화:

 $J = D + \lambda R = MSE + \lambda \times bits$

확률 및 통계 모델

- 가우시안 분포: 잔차 신호 모델링
- 라플라시안 분포: 변환 계수 모델링
- 마르코프 모델: 컨텍스트 의존성
- 베이즈 추론: 예측 및 필터링

CABAC 확률 모델:

07. 전통 비디오 코덱의 특성

수작업으로 설계된 알고리즘들

전문가 중심 설계

- 도메인 지식: 수십 년간 축적된 전문 지식
- 경험적 접근: 시행착오를 통한 최적화
- 휴리스틱 방법: 직관과 경험 기반 해법
- 표준화 과정: 전문가 집단의 합의

인트라 예측 모드:

35개 방향성 모드는 인간 시각 특성과 자연 영상의 통계 적 특성을 분석한 전문가들이 수작업으로 설계

파라미터 튜닝

- 임계값 설정: 수동 조정 및 실험적 결정
- 가중치 조정: 휴리스틱 기반 파라미터
- 룩업 테이블: 미리 계산된 최적값
- 경험적 공식: 실험을 통해 도출된 관계식

양자화 매트릭스:

인간 시각 시스템의 주파수 민감도를 고려하여 전문가가 수작업으로 설계한 가중치

6

룰 기반 의사결정

- 조건부 로직: if-then-else 규칙
- 임계값 비교: 미리 정의된 기준값
- 우선순위 정의: 수작업 순서 결정
- 예외 처리: 특수 케이스 개별 대응

모드 결정:

if (RD_cost_intra < RD_cost_inter)
use_intra_mode(); else
use inter_mode();</pre>

07. 전통 비디오 코덱의 특성

┃ 전통적 방식의 당면 어려움들

🖸 압축 효율의 포화

- 세대별 개선폭 점진적 감소
- 복잡도 증가 대비 성능 향상 한계
- 수학적 모델의 이론적 한계 도달

📏 설계 복잡성 증가

- 수많은 코딩 툴들의 조합
- 하드웨어 구현 복잡도 급증
- 표준화 과정의 장기화

☞ 콘텐츠 적응성 부족

- 고정된 알고리즘으로 다양한 콘텐츠 처리 어려움
- 텍스처, 움직임 패턴별 최적화 부족
- 일률적 처리로 인한 비효율성

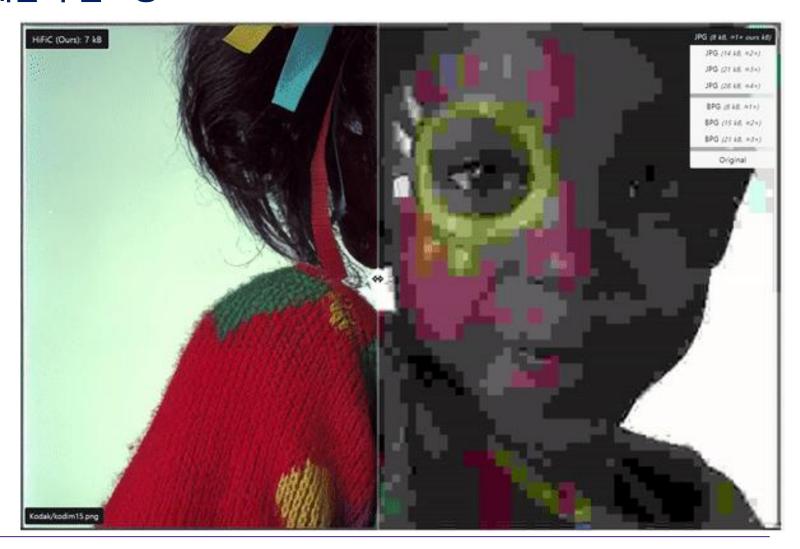
₩ 차세대 미디어 대응 한계

- 4K/8K, VR/AR 등 새로운 요구사항
- 실시간 처리 성능 한계
- 다양한 디바이스 적응 어려움



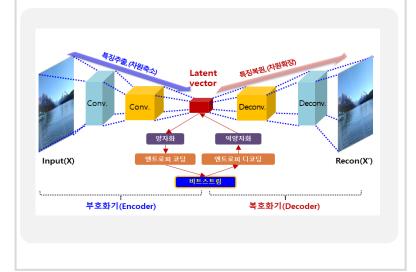
01. 신경망 기반 비디오 압축 기술 개발의 필요성

비디오 애플리케이션 변화의 다양성


비디오 애플리케이션 변화의 다양성

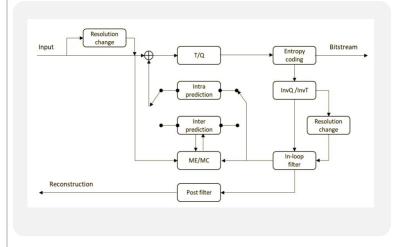
01. 신경망 기반 비디오 압축 기술 개발의 필요성

- ┃ 신경망 기반 압축 기술 예시
- │ 동일비트 대비 화질 비교 (14KB)

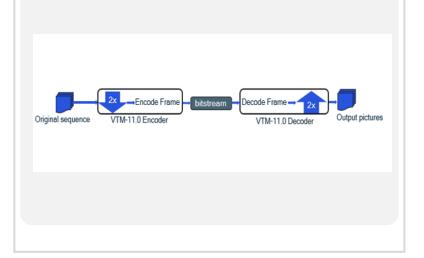


02. 신경망 기반 비디오 연구 동향

┃ 신경망 기반 비디오 압축 기술 분야

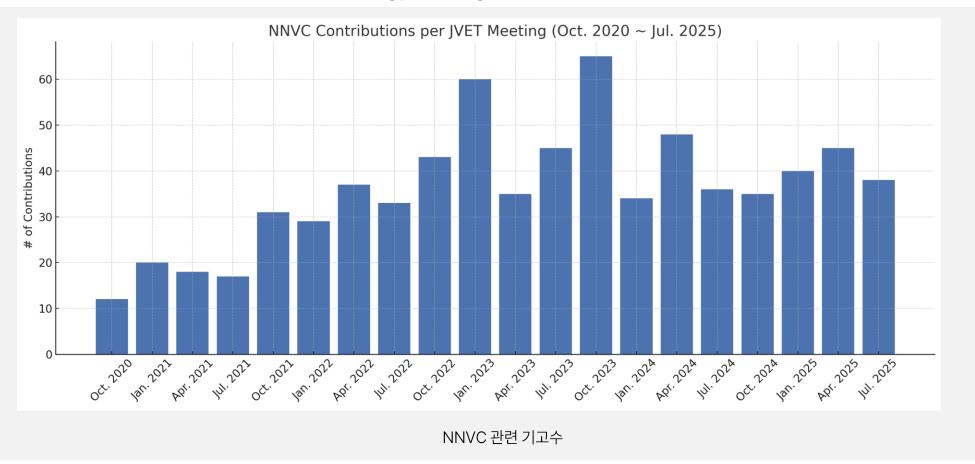

종단간 신경망 기반 부호화 및 복호화 기술

- 특징량 생성 및 복원 기반 부호화 및 복호화 기술
- 비디오 코딩 기술의 신경망 모듈 및 종단간 연결

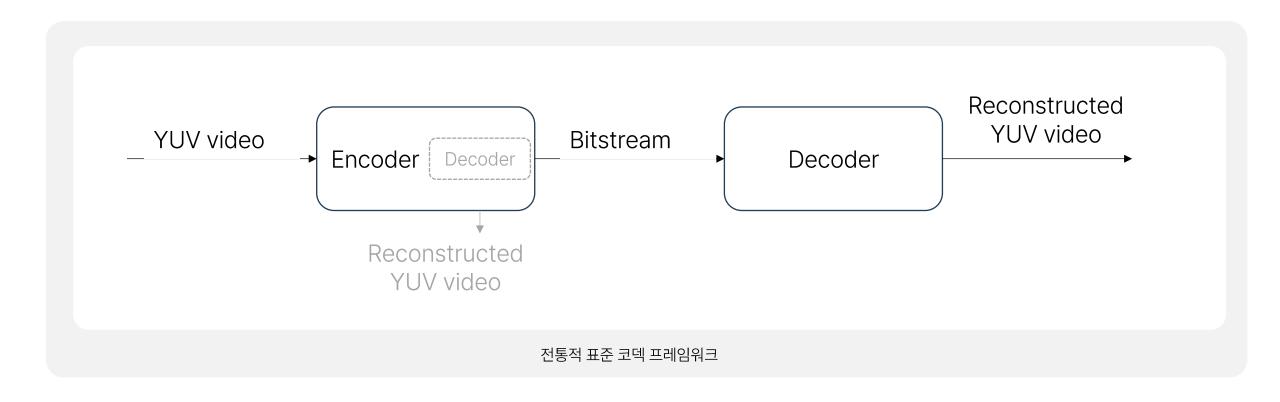

신경망 기반 부호화 및 복호화 요소 기술

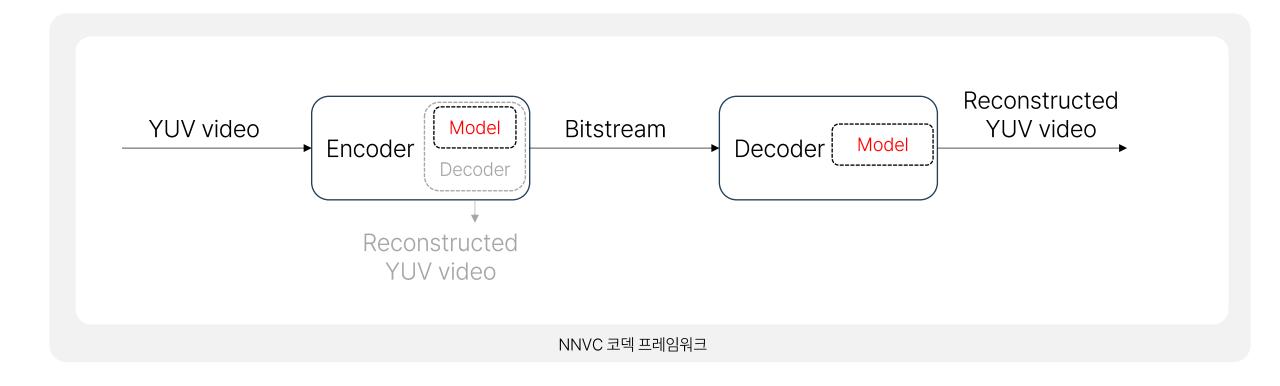
- 신경망을 활용하는 코덱 요소 기술 개발
- 예측, 변환, 필터링등의 기술을 기존 코덱에 적용

SR 기반 부호화 및 복호화 기술


- 원본 해상도 다운샘플링하여 해상도 축소 적용
- 신경망 기반 업샘플링하여 원이미지 해상도 복원

03. JVET에서 NNVC 개발 활동

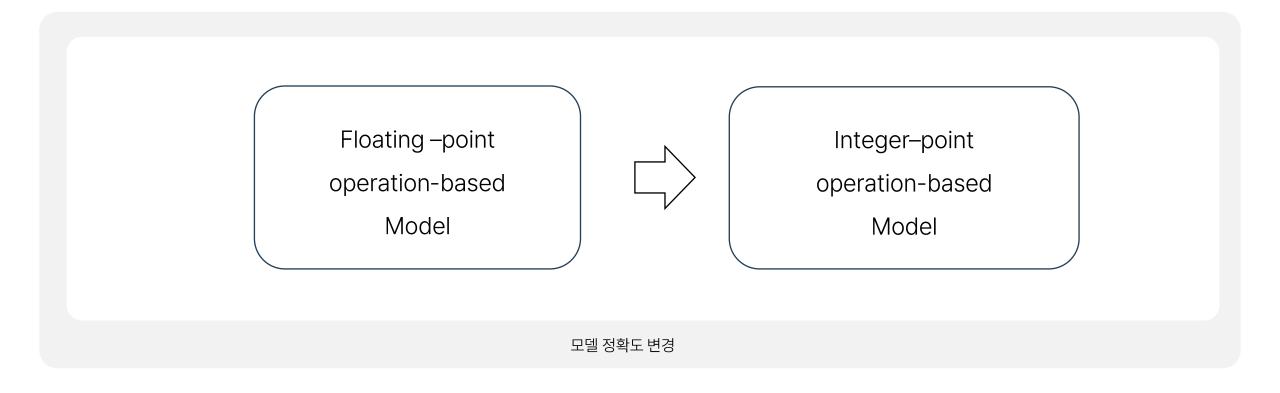

I NNVC (Neural Network based Video Coding) Adhog 수립: 2020년 7월


04. 기존 표준 개발 프레임워크

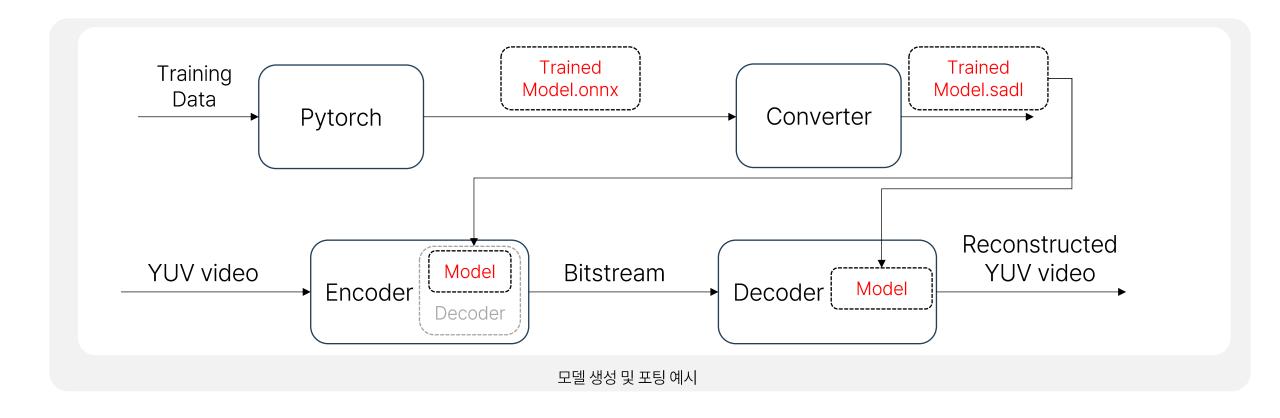
┃ 인코더/디코더 개발시 공동 실험 조건에서 실험을 통한 성능 확인

- Ⅰ 신경망 네트워크 구조 제시 및 모델 훈련
- ┃ 인코더/디코더 개발시 공동 실험 조건에서 실험을 통한 성능 확인

| 훈련을 위한 프레임워크?



VS



│ 모델은 Floating-point vs integer-point?

- l 훈련은 Pytorch / 모델은 C++ 기반 정수형 모델 기반 모델 적용
- ┃ 인코더/디코더 개발시 공동 실험 조건에서 실험을 통한 성능 확인

│ 차세대 비디오 코딩 표준을 준비하는 NNVC Software

생산적 표준 기술 개발의 필요성

• 2년간의 탐색 실험에도 불구하고, 공통 소프트웨어 프레임워크의 부재로 인해 신경망(NN) 기술에서 뚜렷한 진전이 없었음

공통 테스트 환경의 필요성

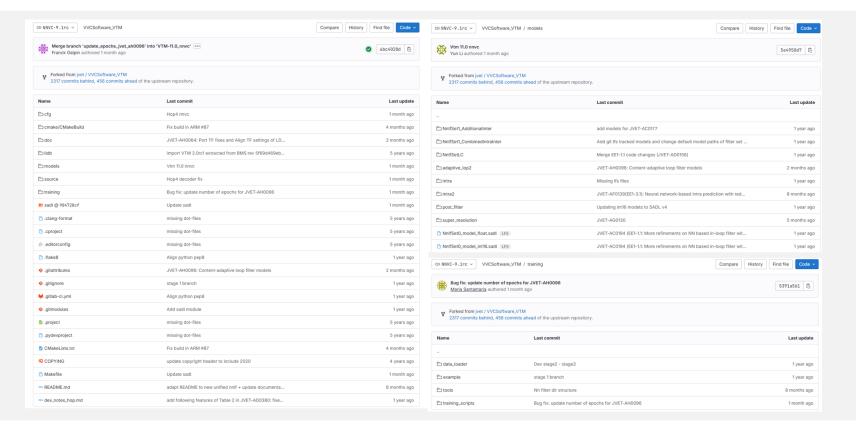
• 제안된 기술들의 부호화 성능을 정확히 평가하기 위해 필수적인 표준화된 테스트 환경(Test Bed)이 존재하지 않아 알고리즘 성능 평가가 어려움

세부 가이드라인의 필요성

• 학습 및 테스트를 위한 포괄적인 지침서가 없어, 데이터 추출, 데이터 생성, 학습, 추론 및 시그널 링 구현 전반에 걸쳐 예시와 안내가 부족함

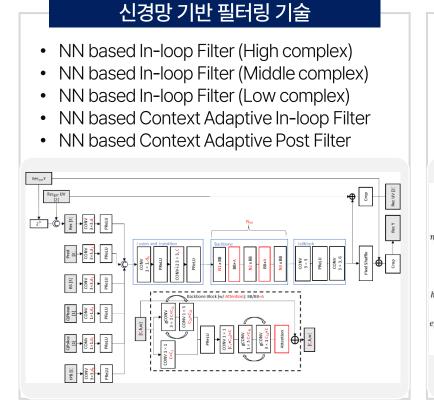
차세대 비디오 코딩 표준 준비의 필요성

VVC/H.266 이후 차세대 비디오 코딩 표준을 준비하기 위해 차세대 표준에 적용될 것으로 예상되는 검증된 NNVC 소프트웨어에 채택 관리함



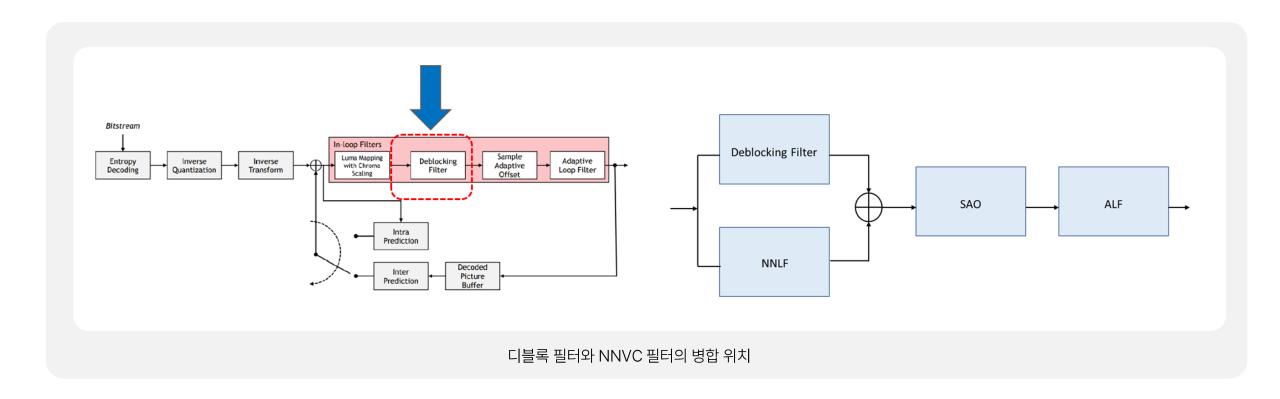
NNVC 개발 관리 Software 개발 일정

Version	Key Technologies Adopted	Release Time
NNVC-1.0	- Loop filter set 0/1	1st half of 2022
NNVC-2.0	- Loop filter + encoder optimization	1st half of 2022
NNVC-3.0	- Encoder-side optimization	2nd half of 2022
NNVC-4.0	- Super-resolution (SR), Post-filter, Intra NN, Low complexity intra prediction	1st half of 2023
NNVC-5.0	- Unified filter for HOP, Low complexity filter (LOP)	2nd half of 2023
NNVC-6.0	- HOP Stage 3 tools and training dataset	Q1 2024
NNVC-7.0	- SADL v7, Luma/Chroma balance (AF0155), LOP.2 improvements	Q2 2024
NNVC-8.0	- SADL v8 (AG0109), HOP3 (AG0174), Unified SR filter, Scaling clean-up	Apr–May 2024
NNVC-9.0	- LOP.3, VLOP, Enhanced SADL, Integrated HOP4	Mid 2024
NNVC-10.0	- Adaptive LOP3, HOP5 adoption, VLOP2 model	Jul-Aug 2024
NNVC-11.0	- LOP4 introduction, HOP5 enhancements, SADL updates, includes VLOP3 model	Q1 2025
NNVC-12.0	- LOP5, SADL v12, Content-adaptive filter	Q2 2025
NNVC-13.0	- LOP6, SADL v13, ALOP integration, cleanup and restructuring based on VTM 23.9	August 2025 (Latest)

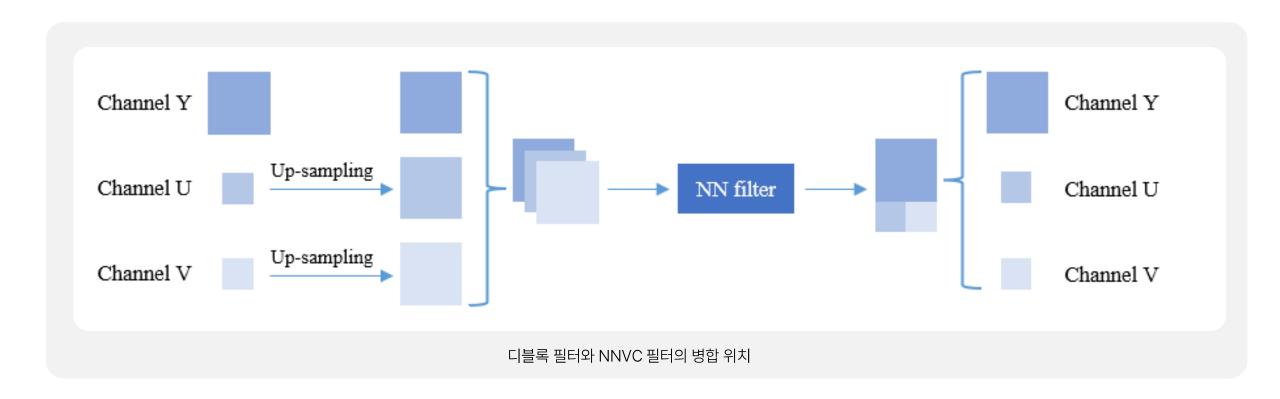


- Study and Maintain SADL: https://vcgit.hhi.fraunhofer.de/jvet-ahg-nnvc/sadl
- NNVC Software: https://vcgit.hhi.fraunhofer.de/jvet-ahg-nnvc/VVCSoftware_VTM/-/tree/master?ref_type=heads

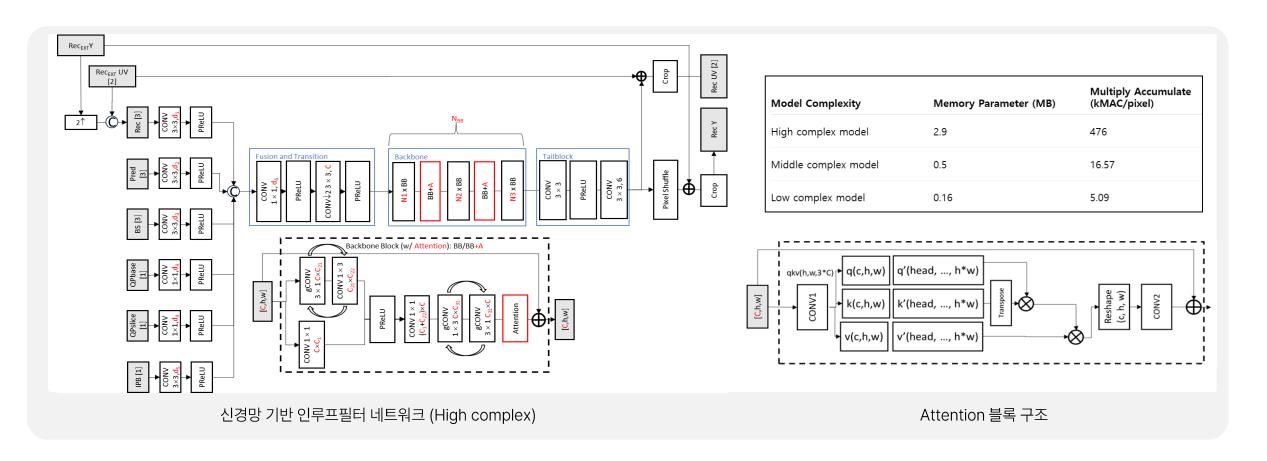
NNVC Software 채택 기술


신경망 기반 예측 기술 NN based Intra Prediction NN based Inter Prediction grpIdx2 preprocessing $X \mid f_{h,w}(.; \boldsymbol{\theta}_{h,w})$ postprocessing

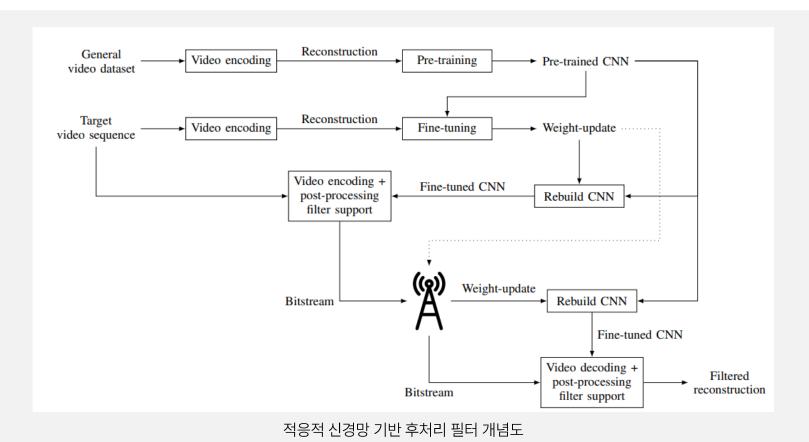
07. 신경망 기반 인루프필터


Combination with deblocking filters

07. 신경망 기반 인루프필터

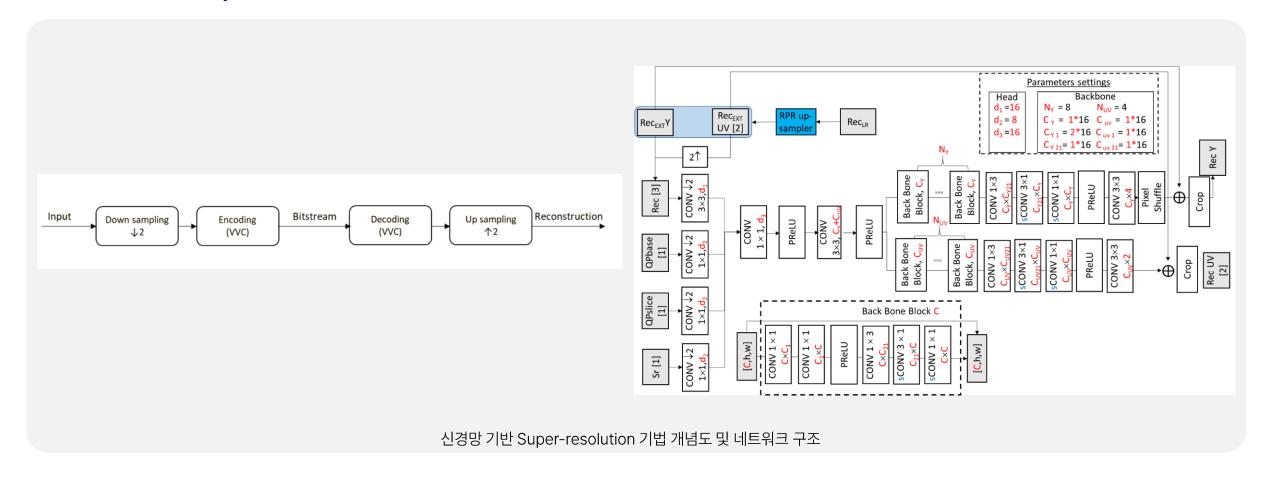

| Pre-processing of chroma

07. 신경망 기반 인루프필터


NN based In-loop Filter)

08. 신경망 기반 후처리필터

NN based Context Adaptive Post Filter



- 31 -

09. 신경망 기반 Super-resolution 기법

CNN-based Super-Resolution

2. 신경망 기반 비디오 코딩 기술과 표준화 동향

10. 신경망 기반 요소 기술 성능 평가

	Random Access				All Intra					Total kMAC/p Total Param (
Test	Y	U	V	Enc	Dec	Y	U	V	Enc	Dec		Mprm)	Source
	NN-Intra & LOP NN-filter												
NNVC-13.0(LOP6)	-8.2%	-14.9%	-13.5%	1.1	28	-9.2%	-15.7%	-15.5%	1.6	23	21.4	1.5	IVET-AM0014
NNVC-12.0(LOP5)	-8.2%	-15.3%	-13.5%	1.2	35	-9.2%	-15.8%	-15.5%	1.6	26	21.4	1.5	JVET-AL0014
NNVC-11.0(CALOP4)	-8.5%	-18.0%	-17.1%	2.3	36	NA	NA	NA	NA	NA	21.6	1.5	JVET-AK0311
NNVC-11.0(LOP4)	-7.6%	-14.3%	-13.2%	1.2	36	-8.6%	-15.4%	-15.7%	1.7	24	21.6	1.5	JVET-AK0014
NNVC-10.0(LOP3)	-7.4%	-13.6%	-11.6%	1.2	34	-8.5%	-14.3%	-14.0%	1.7	22	21.7	1.5	JVET-AJ0014
NNVC-9.1(LOP3)	-7.3%	-13.1%	-11.3%	1.2	81	-8.4%	-14.2%	-13.9%	1.7	49	24.8	1.72	IVET-AI0014
NNVC-8.0(LOP2)	-6.9%	-13.2%	-12.1%	1.2	73	-8.1%	-13.3%	-13.4%	1.7	44	24.9	1.55	IVET-AH0014
NNVC-7.1(LOP1)	-6.9%	-13.2%	-12.1%	1.3	86	-8.1%	-13.3%	-13.4%	1.8	56	24.9	1.55	JVET-AG0014
	NN-Intra & HOP NN-filter												
NNVC-12.0(HOP5)	-14.2%	-19.6%	-20%	2.5	1135	-13.7%	-15.9%	-17.1%	2.5	769	471	2.7	JVET-AL0014
NNVC-11.0(HOP5)	-14.2%	-19.6%	-20%	2.5	1135	-13.7%	-15.9%	-17.1%	2.5	769	471	2.7	JVET-AK0014
NNVC-9.1(HOP4)	-14.0%	-19.1%	-19.5%	2.9	1446	-13.3%	-16.2%	-17.7%	2.6	853	483.6	3.0	IVET-AI0014
NNVC-8.0(HOP3)	-13.7%	-13.9%	-14.5%	2.5	1092	-12.7%	-11.6%	-13.0%	2.4	56	473.8	2.9	JVET-AH0014
	NN-Intra & VLOP NN-filter												
NNVC-12.0(VLOP3)	-5.8%	-6.6%	-5.7%	1.1	15	-7.3%	-8.8%	-8.3%	1.5	11	9.9	1.4	JVET-AL0014
NNVC-11.0(VLOP3)	-5.8%	-6.6%	-5.7%	1.2	17	-7.3%	-8.8%	-8.3%	1.7	13	9.9	1.4	JVET-AK0014
NNVC-10.0(VLOP)	-5.6%	-7.6%	-6.4%	1.1	15	-7.2%	-9.4%	-8.8%	1.7	13	10.0	1.4	JVET-AJ0014
NNVC-9.1(VLOP)	-5.3%	-5.4%	-5.2%	1.2	40	-7.1%	-7.8%	-7.7%	1.8	29	5.1	0.2	JVET-AI0014
	NN-Intra & LOP NN-filter & adaptive resolution												
NNVC-11 (NNSR)	-8.5%	-12.1%	-10.9%			-9.4%	-12.7%	-13.0%			26.4	1.5	JVET-AK0014
NNVC-8.0 RPR(*)	-7.5%	-10.9%	-9.7%			-8.5%	-11.3%	-11.0%			24.9	1.55	JVET-AH0014
NNVC-8.0 NNSR(*)	-7.8%	-11.9%	-10.5%			-8.6%	-11.8%	-11.3%			45.2	1.63	JVET-AH0014

- Ⅰ 기존 신호처리 기반 코덱의 한계를 극복하기 위해 신경망을 활용한 영상 압축 기술이 활발히 도입되고 있음
- l 국제 표준화 기구(ISO/IEC JTC 1/SC 29 및 ITU-T SG 21)에서는 신경망 기반 영상 압축 기술 (NNVC)을 차세대 비디오 압축 표준으로 채택하기 위한 연구를 적극적으로 진행 중임
- l 현재 NNVC 개발 활동은 신경망을 활용한 요소 기술의 적용을 중심으로 기술 개발과 표준화를 준비하고 있음.
- ▎표준화 기구에서는 신경망 기반 압축 기술의 도입을 통해 성능 향상을 기대하고 있으며, 향후 표준에 반영될 가능성이 높음
- l 다만, 기존 비디오 코딩 표준이 하드웨어 기반으로 구현되어 디스플레이 장치에 적용되어 왔다는 점을 고려할 때, 실시간 처리가 가능하고 구현 가능한 신경망 기술의 개발이 병행되어야 한다는 우려 또한 존재함

Global ICT Standards Conference 2025

- 감사합니다 -

최기호 교수 경희대학교

aikiho@khu.ac.kr

ICT Standards and Intellectual Property: Al for All

